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COTS in Manned Spacecraft 

COTS technologies are attractive for 
use in human-rated spacecraft. 

• Reduces development and upgrade costs. 

• Lowers the need for new design work. 

• Eliminates reliance on individual suppliers. 

• Leverages larger knowledge base. 

• Minimizes schedule risk. 

Problem? Hard to meet the high reliability 
and fault tolerance requirements. 

• E.g. 10-9 failures/hour in ultra-dependable systems. 

• E.g. Crit-1, “fly-through” fault tolerance. 

• Studies for Orion showed purely COTS designs  
would result in poor reliability and undue expense. 

Often custom proprietary solutions are needed. 
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COTS in Manned Spacecraft (cont.) 

But the inclusion of COTS technologies 
is becoming more feasible. 

• Greater availability of rad-tolerant components. 

• TMR (Maxwell SCS750), lock-step (ARM R5). 

• Ability to realize fault-containment regions. 

• Growing number of suppliers. 

NASA’s strategy for future spacecraft has 
heavily prioritized using COTS parts. 

• Includes launchers, landers, etc. 

Multiple projects have explored realizing 
safety-critical systems using COTS. 

• Scalable Processor-Independent Design for 
Extended Reliability (SPIDER). 

• Heavy Lift Vehicle (HLV) Architecture Study. 

• Evolvable Mars Campaign (lander).  



SAE INTERNATIONAL Paper # 2017-01-2111 4/23 

Fault Classifications 
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Fault Classifications (cont.) 
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Different observers 

see a fault manifest 

in the same way. 
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Fault Classifications (cont.) 
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Fault Classifications (cont.) 

All Faults 
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Byzantine faults are often 
not considered in satellites. 

• Possibility is considered low enough 
to not warrant additional complexity. 

• Impacts of faults are less severe 
(e.g. not taking a picture). 

Manned spacecraft must 
tolerate Byzantine faults. 

• Especially for dynamic mission 
phases with short time to effect. 

• Higher number of “all-or-none” 
events (e.g. deploy parachutes). 

• Failure could result in loss of life. 
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Byzantine Faults 

Byzantine faults can disrupt consensus 
among redundant processors.  

• E.g. on internal state information. 

• E.g. on sensor data. 

• E.g. on diagnosis of system faults. 

Occur at rates much > 10-9 failures/hour.  

• Slightly-off-specification (SOS) hardware. 

• Stuck transmitter – different receivers can 
interpret a marginal signal differently. 

• Time base corruption – messages received 
slightly too early or too late. 

Several architectural approaches for 
Byzantine-resilient systems.  

• Hierarchical – e.g. SAFEbus, Orion VMCs.   

• Full exchange – e.g. Draper FTMP, SPIDER. 
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A Typical Approach 
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“Channelized bus” approach 
is common in launchers.  

• Each OBC can only access 
devices on its local bus. 

• Uses full exchanges. 

• Usually designed to be 1FT. 

Examples: 

• X-38 CRV, Ares I, Delta IV. 

Shortcomings? 
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A Typical Approach (cont.) 
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Shortcomings? 

1. Requires separate CCDL for data 
exchange between OBCs. 
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A Typical Approach (cont.) 
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Shortcomings? 

1. Requires separate CCDL for data 
exchange between OBCs. 

2. Often requires external timing 
hardware for synchronization. 
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A Typical Approach (cont.) 
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Shortcomings? 

1. Requires separate CCDL for data 
exchange between OBCs. 

2. Often requires external timing 
hardware for synchronization. 

3. Requires separate interstage to 
meet minimum number of FCRs. 
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A Typical Approach (cont.) 
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Shortcomings? 

1. Requires separate CCDL for data 
exchange between OBCs. 

2. Often requires external timing 
hardware for synchronization. 

3. Requires separate interstage to 
meet minimum number of FCRs. 

4. Requires two rounds of data 
exchange between OBCs. 
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A Typical Approach (cont.) 

OBC1 

CCDL Interface 

Bus Interface 

OBC2 

CCDL Interface 

Bus Interface 

OBC3 

CCDL Interface 

Bus Interface 

External time 

 reference 
Cross-Channel Data Link (CCDL)  

Interstage 

CCDL Interface 

COM1 

PDU2 PDU1 

RIU1 

COM2 

PDU3 

RIU2 

B
u

s
 C

h
a
n

n
e
l B

 

B
u

s
 C

h
a
n

n
e
l A

 

B
u

s
 C

h
a
n

n
e
l C

 

Shortcomings? 

1. Requires separate CCDL for data 
exchange between OBCs. 

2. Often requires external timing 
hardware for synchronization. 

3. Requires separate interstage to 
meet minimum number of FCRs. 

4. Requires two rounds of data 
exchange between OBCs. 

5. Bandwidth limited. 
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An Approach Using TTE 

1FT “switched voter” using TTE. 

• Requires only 3 full processors. 

• Requires 2-3 redundant switches. 

• Devices can connect to OBCs 
directly or via TTE network. 

• Assumes minimum number of SMs 
and CMs are present for sync. 

TTE network used for data 
distribution and sync. 

• Eliminates need for separate CCDL. 

• Eliminates need for timing hardware. 

• Bandwidth up to 1 Gbit/s. 

Switches act as interstages. 

• Messages reflected to/from the switches. 

• Eliminates need for fourth processor. 
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Failure Assumptions 

End systems may be subject 
to Byzantine failures. 

• May send arbitrary messages. 

• May transmit at any point in time. 

• May send different messages to 
different switches. 

 

Switches are restricted to 
inconsistent omission failures. 

• May not create (nor modify to produce) 
a new “valid” message. 

• May drop or fail to receive an arbitrary 
number of messages. 

• May relay messages asymmetrically – 
some receivers may not get data. 

• Acts as a “trusted sender”. 

 

 

Fault propagation from switches theoretically 

requires dual-correlated simultaneous faults. 

 10-6 ×10-6 = ~10-12 failures/hour 
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Agreement on Local Data 
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Agreement on Local Data (cont.) 
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Agreement on External Data 
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Commanding 

OBC1 

TTE NIC 

OBC2 

TTE NIC 

OBC3 

TTE NIC 

SW1 SW2 SW3 

RIU1 

TTE NIC 

RIU2 

TTE NIC 

5 5 

5 5 

5 5 

5 
K 5 

• A fault causes 

OBC2 to send a  

bad value to SW3. 

1 



SAE INTERNATIONAL Paper # 2017-01-2111 21/23 

Commanding (cont.) 
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Commanding (cont.) 
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Happening Simultaneously … 
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Questions? 


